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A GAS-KINETIC SCHEME FOR MULTIMATERIAL FLOWS
AND ITS APPLICATION IN CHEMICAL REACTION∗

YONGSHENG LIAN† AND KUN XU‡

Abstract. This paper concerns the extension of the multicomponent gas-kinetic BGK-type scheme [26]
to multidimensional chemical reactive flow calculations. In the kinetic model, each component satisfies its
individual gas-kinetic BGK equation and the equilibrium states of both components are coupled in space
and time due to the momentum and energy exchange in the course of particle collisions. At the same time,
according to the chemical reaction rule one component can be changed into another component with the
release of energy, where the reactant and product could have different γ. Many numerical test cases are
included in this paper, which show the robustness and accuracy of kinetic approach in the description of
multicomponent reactive flows.
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1. Introduction. The development of numerical methods for the multimaterial flows have attracted
much attention in the past years [15, 22, 8, 9]. One of the main application for these methods is the
chemical reactive flow calculations [2, 10, 18]. Research of reactive flows, especially the detonation waves,
was pioneered by Zeldovich, von Neumann, and Doering, who developed a well known ZND model. The ZND
model consists of a non-reactive shock followed by a reaction zone. Ever since the model was proposed, lots of
theoretical and numerical work on this problem have been done. Numerical calculation of the ZND detonation
was pioneered by Fickett and Wood [11]. They solved the one-dimensional equations using the method of
characteristics in conjunction with a shock fitting method. Longitudinal instability waves were accurately
simulated. Later, Taki and Fujiwara applied van Leer’s upwind method to calculate two-dimensional traveling
detonation waves [23, 24]. They solved the Euler equations coupled with two species equations. The chemical
reaction was simulated by a two-step finite-rate model and the transverse instabilities around shock front
were clearly observed. It was pointed out by Colella et al in [5] that if the numerical resolution in the
detonative shock front is not enough, unphysical solution can be easily generated, such as the wrong shock
speed. In order to avoid the unphysical solution, Engquist and Sjögreen [6] obtained a high order TVD/ENO
numerical method combined with Runge-Kutta time marching scheme to solve the combustion problem and
designed a special treatment in the shock region. Kailasanath et. al [14] extended the Flux-Corrected
Transport (FCT) algorithm for detonations. In the early 90s, Bourlioux et.al. combined PPM scheme with
conservative front tracking and adaptive mesh refinement in the study of detonative waves [2, 3, 4]. They
showed the spatial-temporal structure of unstable detonation in one and two spatial dimensions and found
good agreement between the numerical simulation and the experimental data. Quirk [21] addressed the
particular deficiency of the Godunov type upwind schemes in solving complex flow problems, and suggested
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a hybrid scheme, from which he successfully simulated the galloping in one and two-dimensional detonations.
Lindström [18] analyzed the poor convergence of inviscid Euler solutions in the study of detonative waves and
suggested to solve the compressible Navier-Stokes equations directly. Most recently, Hwang et al [13] pointed
out that not only the resolution of the reaction zone is important, but also the size of the computational
domain is critical in the capturing of correct detonative solutions. So far, it is well recognized that a good
scheme for the reactive flow must be able to capture correct shock speed, and resolve wave structures in
multidimensional case, as well as present the correct period of the possible unsteady oscillation in the wave.

Ever since the gas kinetic scheme was proposed for the compressible flow simulations [25], due to its
robustness and accuracy it has attracted more attentions in the CFD community. In this paper, we are
going to extend the multicomponent BGK solver [26] to high dimensions, and develop a new scheme with
the inclusion of reactive terms. The paper is organized as follows. Section 2 introduces the governing
equations for the chemical reactive flows in the 2D case, and describes the numerical method. Section 3
is about the numerical experiments, which include non-reactive shock bubble interaction and ZND wave
calculations in both 1D and 2D cases. We also show a new example where the reactant and product could
have different γ. Different from previous approach [17], the current method follows the evolution of each
species individually, and the scheme is more robust than the previous one.

2. Numerical Method. The focus of this section is to present a kinetic scheme to solve the following
reacting compressible Euler equations in the 2-D case,




ρ1

ρ2

ρU

ρV

ρE




t

+




ρ1U

ρ2U

ρU2 + P

ρUV

U(ρE + P )




x

+




ρ1V

ρ2V

ρUV

ρV 2 + P

V (ρE + P )




y

=




−K(T )ρ1

K(T )ρ1

0
0

K(T )Q0ρ1


,(2.1)

where ρ1 is the density of reactant, ρ2 is the density of product, ρ = ρ1 + ρ2 is the total density, ρE is the
total energy which include both kinetic and thermal ones, i.e. ρE = 1

2ρ(U2 +V 2)+P1/(γ1−1)+P2/(γ2−1).
Here U , V are the average flow velocities in the x and y directions respectively. Each component has its
specific heat ratios γ1 and γ2. P = P1 + P2 is the total pressure, and Q0 is the amount of heat released per
unit mass by reaction. The equation of state can be expressed as P1 = ρ1RT and P2 = ρ2RT . K(T ) is the
chemical reactive rate, which is a function of temperature. The specific form of K(T ) will be given in the
numerical example section.

The above reactive flow equations will be solved in two steps. In the first step, the nonreactive gas
evolution parts are solved using the multimaterial gas-kinetic method. In the second step, the source terms
on the right hand side of Eq.(2.1) are included in the update of flow variables inside each cell.

2.1. 2-D Multicomponent BGK Scheme.

2.1.1. Gas-kinetic Governing Equations. The focus of this subsection is to present the multicom-
ponent BGK scheme in two dimensions. For two dimensional problem, the governing equation for the time
evolution of each component is the BGK model,

f
(1)
t + uf (1)

x + vf (1)
y =

g(1) − f (1)

τ
,

f
(2)
t + uf (2)

x + vf (2)
y =

g(2) − f (2)

τ
,(2.2)
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where f (1) and f (2) are particle distribution functions for component 1 and 2 gases, and g(1) and g(2) are
the corresponding equilibrium states which f (1) and f (2) approach. The relations between the distribution
function and the macroscopic variables are,∫

f (1)φ(1)
α dΞ(1) + f (2)φ(2)

α dΞ(2) = W

= (ρ1, ρ2, ρU, ρV, ρE)T ,(2.3)

where dΞ(1) = dudvdξ1, dΞ(2) = dudvdξ2,

φ(1)
α = (1, 0, u, v,

1
2
(u2 + v2 + ξ2

1))T

φ(2)
α = (0, 1, u, v,

1
2
(u2 + v2 + ξ2

2))T ,

are the moments for individual mass, total momentum, and total energy densities, ξ2
1 = ξ2

1,1 + ξ2
1,2 + · · · +

ξ2
1,K1

and ξ2
2 = ξ2

2,1 + ξ2
2,2 + · · · + ξ2

2,K2
. The integration elements are dξ1 = dξ1,1dξ1,2...dξ1,K1 and dξ2 =

dξ2,1dξ2,2...dξ2,K2 . K1 and K2 are the degrees of the internal variables ξ1 and ξ2, which are related to the
specific heat ratios γ1 and γ2. For the two-dimensional flow, we have

K1 = (5− 3γ1)/(γ1 − 1) + 1 and K2 = (5− 3γ2)/(γ2 − 1) + 1.

Instead of individual mass, momentum and energy conservation in a single component flow, for two compo-
nent gas mixtures the compatibility condition is∫

(g(1) − f (1))φ(1)
α dΞ(1) + (g(2) − f (2))φ(2)

α dΞ(2) = 0, α = 1, 2, 3, 4, 5.(2.4)

The equilibrium Maxwellian distributions g(1) and g(2) are generally defined as

g(1) = ρ1 (λ1/π)
K1+2

2 e−λ1((u−U1)
2+(v−V1)

2+ξ2
1),

g(2) = ρ2 (λ2/π)
K2+2

2 e−λ2((u−U2)
2+(v−V2)

2+ξ2
2),

where λ1 and λ2 are function of temperature. Due to the momentum and energy exchange in particle
collisions, in most cases, the equilibrium states g(1) and g(2) can be assumed to have the same velocity and
temperature at any point in space and time. So, based on given initial macroscopic variables at any point
in space and time,

W (1) =
∫

g(1)φ(1)
α dΞ(1) = (ρ1, ρ1U1, ρ1V1, ρ1E1)T ,

W (2) =
∫

g(2)φ(2)
α dΞ(2) = (ρ2, ρ2U2, ρ2V2, ρ2E2)T ,(2.5)

we can get the corresponding equilibrium values

W (1) =
(

ρ1, ρ1U, ρ1V,
1
2
ρ1(U2 + V 2 +

K1 + 2
2λ

)
)T

,

W (2) =
(

ρ2, ρ2U, ρ2V,
1
2
ρ2(U2 + V 2 +

K2 + 2
2λ

)
)T

,(2.6)
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where the common values of U , V and λ can be obtained from the conservation requirements,

ρ = ρ1 + ρ2,

ρ1U1 + ρ2U2 = ρU,

ρ1V1 + ρ2V2 = ρV,

ρ1E1 + ρ2E2 =
ρ(U2 + V 2)

2
+

(K + 2)ρ
4λ

.(2.7)

With the definition of “averaged” value of internal degree of freedom K,

K =
ρ1K1 + ρ2K2

ρ
,(2.8)

and the average γ

γ =
K + 4
K + 2

,(2.9)

the values U , V and λ can be obtained from Eq.(2.7) explicitly,

U =
ρ1U1 + ρ2U2

ρ
,(2.10)

V =
ρ1V1 + ρ2V2

ρ
,(2.11)

and

λ =
1
4

(K + 2)ρ
ρ1E1 + ρ2E2 − 1

2ρ(U2 + V 2)
.(2.12)

As a result, the equilibrium states can be expressed as

g(1) = ρ1 (λ/π)
K1+2

2 e−λ((u−U)2+(v−V )2+ξ2
1),(2.13)

g(2) = ρ2 (λ/π)
K2+2

2 e−λ((u−U)2+(v−V )2+ξ2
2).(2.14)

The governing equations (2.2) basically correspond to viscous multimaterial governing equations, and the
scheme presented in the next section is actually solving the Navier-Stokes flow equations, where the dissipative
coefficients are proportional to the collision time τ [25].

2.1.2. Multicomponent Gas-kinetic Scheme. Numerically, the Boltzmann equations (2.2) are solved
using the splitting method. For example, in the x direction, we solve

f
(1)
t + uf (1)

x =
g(1) − f (1)

τ
,

f
(2)
t + uf (2)

x =
g(2) − f (2)

τ
,
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and in the y direction,

f
(1)
t + vf (1)

y =
g(1) − f (1)

τ
,

f
(2)
t + vf (2)

y =
g(2) − f (2)

τ
.

In each fractional step, the compatibility condition (2.4) is still satisfied.
For the BGK model, in the x direction the equivalent integral solution of f at a cell interface xi+1/2 and

time t is

f (1)(xi+1/2, t, u, v, ξ1) =
1
τ

∫ t

0

g(1)(x′, t′, u, v, ξ1)e−(t−t′)/τdt′

+e−t/τf
(1)
0 (xi+1/2 − ut)(2.15)

for component 1, and

f (2)(xi+1/2, t, u, v, ξ2) =
1
τ

∫ t

0

g(2)(x′, t′, u, v, ξ2)e−(t−t′)/τdt′

+e−t/τf
(2)
0 (xi+1/2 − ut)(2.16)

for component 2, where xi+1/2 is the cell interface and x′ = xi+1/2 − u(t− t′) the particle trajectory. There
are four unknowns in Eq.(2.15) and Eq.(2.16). Two of them are initial gas distribution functions f

(1)
0 and

f
(2)
0 at the beginning of each time step t = 0, and the others are g(1) and g(2) in both space and time locally

around (xi+1/2, t = 0).
Numerically, at the beginning of each time step t = 0, we have the macroscopic flow distributions inside

each cell i,

Wi = (ρ1, ρ2, ρU, ρV, ρE)T
i .

From the discretized initial data, we can apply the standard van Leer limiter L(,̇)̇ to interpolate the conser-
vative variables Wi and get the reconstructed initial data

W̄i(x) = Wi + L(si+, si−)(x − xi), for x ∈ [xi−1/2, xi+1/2],(2.17)

and
(
W̄i(xi−1/2), W̄i(xi+1/2)

)
are the reconstructed point-wise values at the cell interfaces xi−1/2 and xi+1/2.

In order to simplify the notation, in the following xi+1/2 = 0 is assumed. With the interpolated macro-
scopic flow distributions W̄i, the initial distribution functions f

(1)
0 and f

(2)
0 in Eq.(2.15) and Eq.(2.16) are

constructed as

f
(1)
0 =



(
1 + a

(1)
l x

)
g
(1)
l , x < 0,(

1 + a
(1)
r x

)
g
(1)
r , x > 0,

(2.18)

for component 1, and

f
(2)
0 =



(
1 + a

(2)
l x

)
g
(2)
l , x < 0,(

1 + a
(2)
r x

)
g
(2)
r , x > 0,

(2.19)

for component 2. The equilibrium states in Eq.(2.15) and Eq.(2.16) around (x = 0, t = 0) are assumed to be

g(1) =
(
1 + (1−H(x))ā(1)

l x + H(x)ā(1)
r x + Ā(1)t

)
g
(1)
0 ,(2.20)

5



and

g(2) =
(
1 + (1−H(x))ā(2)

l x + H(x)ā(2)
r x + Ā(2)t

)
g
(2)
0 ,(2.21)

where H(x) is the Heaviside function. g
(1)
0 and g

(2)
0 are the initial equilibrium states located at the cell

interface,

g
(1)
0 = ρ1,0 (λ0/π)

K1+2
2 e−λ0((u−U0)2+(v−V0)2+ξ2

1),

g
(2)
0 = ρ2,0 (λ0/π)

K2+2
2 e−λ0((u−U0)2+(v−V0)2+ξ2

2).(2.22)

The parameters a
(1,2)
l,r , ā

(1,2)
l,r and Ā(1,2) have the forms

a
(1,2)
l = a

(1,2)
l,1 + a

(1,2)
l,2 u + a

(1,2)
l,3 v + a

(1,2)
l,4

u2 + v2 + ξ2
1,2

2
,

a(1,2)
r = a

(1,2)
r,1 + a

(1,2)
r,2 u + a

(1,2)
r,3 v + a

(1,2)
r,4

u2 + v2 + ξ2
1,2

2
,

ā
(1,2)
l = ā

(1,2)
l,1 + ā

(1,2)
l,2 u + ā

(1,2)
l,3 v + ā

(1,2)
l,4

u2 + v2 + ξ2
1,2

2
,

ā(1,2)
r = ā

(1,2)
r,1 + ā

(1,2)
r,2 u + ā

(1,2)
r,3 v + ā

(1,2)
r,4

u2 + v2 + ξ2
1,2

2
,

Ā(1,2) = Ā
(1,2)
1 + Ā

(1,2)
2 u + Ā

(1,2)
3 v + Ā

(1,2)
4

u2 + v2 + ξ2
1,2

2
.

All coefficients a
(1,2)
l,1 , a

(1,2)
l,2 ,..., Ā

(1,2)
4 are local constants. In order to determine all these unknowns, the BGK

scheme is summarized as follows.

The equilibrium Maxwellian distribution functions located on the left side of the cell interface xi+1/2 for
component 1 and 2 are,

g
(1)
l = ρ1,l (λl/π)

K1+2
2 e−λl((u−Ul)

2+(v−Vl)
2+ξ2

1),

and

g
(2)
l = ρ2,l (λl/π)

K2+2
2 e−λl((u−Ul)

2+(v−Vl)
2+ξ2

2).(2.23)

At the location x = 0, the relations (2.3) and (2.4) require

W̄i(xi+1/2) ≡




ρ̄1,i

ρ̄2,i

¯(ρU)i

¯(ρV )i

¯(ρE)i




xi+1/2

=
∫

g
(1)
l φ1

αdΞ(1) + g
(2)
l φ2

αdΞ(2) =




ρ1,l

ρ2,l

(ρU)l

(ρV )l

(ρE)l


,
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and

W̄i+1(xi+1/2) ≡




ρ̄1,i+1

ρ̄2,i+1

¯(ρU)i+1

¯(ρV )i+1

¯(ρE)i+1




xi+1/2

=
∫

g(1)
r φ(1)

α dΞ(1) + g(2)
r φ(2)

α dΞ(2) =




ρ1,r

ρ2,r

(ρU)r

(ρV )r

(ρE)r


,

from which we have 


ρ1,l

ρ2,l

Ul

Vl

λl




=




ρ̄1,i

ρ̄2,i

Ūi

V̄i
(K1+2)ρ̄1,i+(K2+2)ρ̄2,i

4( ¯(ρE)i− 1
2 ρ̄i(Ū2

i
+V̄ 2

i
))




xi+1/2

.

Similarly, 


ρ1,r

ρ2,r

Ur

Vr

λr




=




ρ̄1,i+1

ρ̄2,i+1

Ūi+1

V̄i+1
(K1+2)ρ̄1,i+1+(K2+2)ρ̄2,i+1

4( ¯(ρE)i+1− 1
2 ρ̄i+1(Ū2

i+1+V̄ 2
i+1))




xi+1/2

.

Therefore, g
(1)
l , g

(2)
l , g

(1)
r and g

(2)
r are totally determined.

Since g(1) and g(2) have the same temperature and velocity at any point in space and time, as shown
in Eq.(2.6), the parameters (a(1,2)

l,1 , a
(1,2)
l,2 , a

(1,2)
l,3 , a

(1,2)
l,4 ) are not totally independent. Since a

(1,2)
l,2 , a

(1,2)
l,3 , a

(1,2)
l,4

depend only on derivatives of U0 ,V0 and λ0, common velocity and temperature in space and time require

al,2 ≡ a
(1)
l,2 = a

(2)
l,2 , al,3 ≡ a

(1)
l,3 = a

(2)
l,3 and al,4 ≡ a

(1)
l,4 = a

(2)
l,4 .

This is also true among the parameters a
(1)
r,2 , a

(2)
r,2 , . . . , a

(1)
r,2 , a

(2)
r,2 on the right hand side of a cell interface. So,

inside each cell i, we have

W̄i(xi+1/2)− W̄i(xi)
xi+1/2 − xi

≡




ω1

ω2

ω3

ω4

ω5




=
∫ (

a
(1)
l,1 + al,2u + al,3v + al,4

u2 + v2 + ξ2
1

2

)
g
(1)
l φ(1)

α dΞ(1)

+
(

a
(2)
l,1 + al,2u + al,3v + al,4

u2 + v2 + ξ2
2

2

)
g
(2)
l φ(2)

α dΞ(2).(2.24)

The above five equations uniquely determine the five unknowns (a(1)
l,1 , a

(2)
l,1 , al,2, al,3, al,4) and the solutions is

the following: Define

Π1 = ω3 − Ul(ω1 + ω2),

Π2 = ω4 − Vl(ω1 + ω2),

Π3 = ω5 −
U2

l + V 2
l + K1+2

2λl

2ω1
− U2

l + V 2
l + K2+2

2λl

2ω2
.
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The solutions of Eq.(2.24) are

al,4 =
8λ2

l (Π3 − UlΠ1 − VlΠ2)
(K1 + 2)ρ1,l + (K2 + 2)ρ2,l

,

al,3 =
2λl

ρ1,l + ρ2,l

(
Π2 − (ρ1,l + ρ2,l)Vl

2λl
al,4

)
,

al,2 =
2λl

ρ1,l + ρ2,l

(
Π1 − (ρ1,l + ρ2,l)Ul

2λl
al,4

)
,

a
(2)
l,1 =

1
ρ2,l

(
ω2 − ρ2,l(Ulal,2 + Vlal,3)− ρ2(

U2
l + V 2

l

2
+

K2 + 2
4λl

)al,4

)
,

a
(1)
l,1 =

1
ρ1,l

(
ω1 − ρ1,l(Ulal,2 + Vlal,3)− ρ1(

U2
l + V 2

l

2
+

K1 + 2
4λl

)al,4

)
.

With the same method, all terms in a
(1,2)
r terms can be obtained.

By taking the limits of (t → 0) in Eq.(2.15) and Eq.(2.16), applying the compatibility condition at
(x = xi+1/2, t = 0), and using Eq.(2.18, 2.19), we get

( ρ1,0, ρ2,0, ρ0U0, ρ0V0, ρ0E0 )T ≡
∫

g
(1)
0 φ(1)

α dΞ(1) + g
(2)
0 φ(2)

α dΞ(2)

= lim
t→0

e−t/τ

∫
f

(1)
0 (xi+1/2 − ut)φ(1) dΞ(1) + f

(2)
0 (xi+1/2 − ut)φ(2) dΞ(2)

=
∫ (

H(u)g(1)
l + (1 −H(u))g(1)

r

)
φ(1)

α dΞ(1) +
(
H(u)g(2)

l + (1−H(u))g(2)
r

)
φ(2)

α dΞ(2).(2.25)

The right hand side of the above equation can be evaluated explicitly using g
(1,2)
l,r in Eq.(2.23). Therefore,

ρ1,0, ρ2,0, λ0, U0 and V0 in Eq.(2.22) can be obtained from Eq.(2.25). As a result, g
(1)
0 and g

(2)
0 are totally

determined. Then, connecting the macroscopic variables

W0 = (ρ1,0, ρ2,0, ρ0U0, ρ0V0, ρ0E0)
T

at the cell interface with the cell centered values in Eq.(2.17) on both sides, we obtain the slopes for the
macroscopic variables,

W0 − W̄i(xi)
xi+1/2 − xi

, and
W̄i+1(xi+1)−W0

xi+1 − xi+1/2
,

from which ā
(1)
l and ā

(2)
l in Eq.(2.20) and ā

(1)
r and ā

(2)
r in Eq.(2.21) can be determined using the same

techniques for solving Eq.(2.24). At this point, there are only two unknowns Ā(1,2) left for the time evolution
parts of the gas distribution functions in Eq.(2.20) and Eq.(2.21).

Substituting Eq.(2.18), Eq.(2.19) and Eq.(2.22) into the integral solutions Eq.(2.15) and Eq.(2.16), we
get

f (1)(xi+1/2, t, u, v, ξ1) = (1− e−t/τ )g(1)
0 + τ(t/τ − 1 + e−t/τ )Ā(1)g

(1)
0

+
(
τ(−1 + e−t/τ ) + te−t/τ

)(
ā
(1)
l H(u) + ā(1)

r (1−H(u))
)

ug
(1)
0

+e−t/τ
(
(1− uta

(1)
l )H(u)g(1)

l + (1 − uta(1)
r )(1 −H(u))g(1)

r

)
,

(2.26)

and

f (2)(xi+1/2, t, u, v, ξ2) = (1− e−t/τ )g(2)
0 + τ(t/τ − 1 + e−t/τ )Ā(2)g

(2)
0
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+
(
τ(−1 + e−t/τ ) + te−t/τ

)(
ā
(2)
l H[u] + ā(2)

r (1−H(u))
)

ug
(2)
0

+e−t/τ
(
(1− uta

(2)
l )H(u)g(2)

l + (1− uta(2)
r )(1 −H(u))g(2)

r

)
.

(2.27)

In order to evaluate the unknowns Ā(1,2) in the above two equations, we can use the compatibility condition
at the cell interface xi+1/2 on the whole CFL time step ∆t,

∫ ∆t

0

∫
(g(1) − f (1))φ(1)

α dΞ(1)dt + (g(2) − f (2))φ(2)
α dΞ(2)dt = 0,

from which we can get ∫
g
(1)
0 Ā(1)φ(1)

α dΞ(1) + g
(2)
0 Ā(2)φ(2)

α dΞ(2)

=
∫ (

Ā
(1)
1 + Ā2u + Ā3v + Ā4

u2 + v2 + ξ2
1

2

)
g
(1)
0 φ(1)

α dΞ(1)

+
(

Ā
(2)
1 + Ā2u + Ā3v + Ā4

u2 + v2 + ξ2
2

2

)
g
(2)
0 φ(2)

α dΞ(2)

=
1
γ0

∫ [
γ1g

(1)
0 + γ2u

(
ā
(1)
l H(u) + ā(1)

r (1−H(u))
)

g
(1)
0

+γ3

(
H(u)g(1)

l + (1 −H(u))g(1)
r

)
+γ4u

(
a
(1)
l H(u)g(1)

l + a(1)
r (1−H(u))g(1)

r

)]
φ(1)

α dΞ(1)

+
[
γ1g

(2)
0 + γ2u

(
ā
(2)
l H(u) + ā(2)

r (1−H(u))
)

g
(2)
0

+γ3

(
H(u)g(2)

l + (1 −H(u))g(2)
r

)
+γ4u

(
a
(2)
l H(u)g(2)

l + a(2)
r (1−H(u))g(2)

r

)]
φ(2)

α dΞ(2),

(2.28)

where

γ0 = ∆t− τ(1 − e−∆t/τ),

γ1 = −(1− e−∆t/τ ),

γ2 = −∆t + 2τ(1 − e−∆t/τ)−∆te−∆t/τ ,

γ3 = (1 − e−∆t/τ),

and

γ4 = −τ(1 − e−∆t/τ) + ∆te−∆t/τ .

The right hand side of the Eq.(2.28) is known, therefore all parameters in Ā(1,2) terms can be obtained
explicitly.
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Finally the time-dependent numerical fluxes for component 1 and component 2 gases across a cell in-
terface can be obtained by taking the moments of the individual gas distribution functions f (1) and f (2) in
Eq.(2.15) and Eq.(2.16) separately, which are




Fρ1

0
Fρ1U1

Fρ1V1

Fρ1E1




i+1/2

=
∫

uφ(1)
α f (1)(xi+1/2, t, u, v, ξ1)dΞ(1),

and 


0
Fρ2

Fρ2U2

Fρ2V2

Fρ2E2




i+1/2

=
∫

uφ(2)
α f (2)(xi+1/2, t, u, v, ξ2)dΞ(2).

Integrating the above time-dependent flux functions in a whole time step ∆t, we can get the total mass,
momentum and energy transports for each component, from which the flow variables in each cell can be
updated.

2.2. Reaction Step and Flow Update. After obtaining the flux functions across a cell interface, we
need to solve an ODE to account for the source term, i.e. Wt = S. More specifically, inside each cell we
need to solve 


(ρ1)t = −K(T )ρ1,

(ρ2)t = K(T )ρ1,

(ρE)t = KQ0ρ1.

(2.29)

In the current study, one step forward-Euler method is used to solve the above equations.
In summary, the update of the flow variables inside cell (i, j) from step n to n+1 is through the following

formulation,

Wn+1
i,j = Wn

i,j −
1

∆V

(
∆y

∫ ∆t

0

(Fi−1/2,j − Fi+1/2,j)dt + ∆x

∫ ∆t

0

(Gi,j−1/2 −Gi,j+1/2)dt

)
+ ∆tSi,j ,

where Si,j is the corresponding source terms in cell (i, j), F and G are numerical fluxes across cell interfaces
by solving the multicomponent BGK equations, and ∆V is the area of the cell (i, j).

3. Numerical Examples. In this section, we are going to test the multicomponent BGK scheme for
both nonreactive and reactive flow calculations. For the viscous calculations, the collision time τ in the BGK
scheme presented in the last section is set to be

τ = µ/P,

where µ is the dynamical viscosity coefficient and P is the total local pressure. For the Euler solutions, the
collision time in the calculation is defined as

τ = 0.05∆t +
|Pl − Pr|
Pl + Pr

∆t,

10



where ∆t is the CFL time step, and Pl and Pr are the corresponding pressure terms in the states gl and gr

of the initial gas distribution function f0. From the above expression, we know that in the smooth region
there are about 20 collisions inside each time step in the current inviscid calculations, and the magnitude of
corresponding numerical diffusion is about 1/10 of that in the Kinetic Flux Vector Splitting (KFVS) scheme
[20, 19, 25]. Also, in comparison with the previous “single component” kinetic method for the reactive flows
[17], the current approach is more robust. The detail comparison is shown in [16].

3.1. Nonreactive Multimaterial Flow Calculations. In this subsection, we are going to show two
cases about the shock-bubble interactions. The main difference between these two cases is about the initial
density difference inside the bubble, which consequently gives different flow pattern around material interface.

CASE(1) A Ms=1.22 shock wave in air hits a Helium cylindrical bubble
We examine the interaction of a Ms = 1.22 planar shock wave, moving in the air, with a cylindrical

bubble of Helium. Experimental data can be found in [12] and numerical solutions using adaptive mesh
refinement has been reported in [22]. Recently, a ghost fluid method has been applied to this case too [8].
A schematic description of computational set-up is shown in Fig.(4.1), where reflection boundary conditions
are used on the upper and lower boundaries. The initial flow distribution is determined from the standard
shock relation with the given strength of the incident shock wave. The bubble is assumed to be in both
thermal and mechanical equilibrium with the surrounding air. The non-dimensionalized initial conditions
are,

W = (ρ = 1, U = 0, V = 0, P = 1, γ = 1.4), pre-shock air

W = (ρ = 1.3764, U = −0.394, V = 0, P = 1.5698, γ = 1.4), post-shock air

W = (ρ = 0.1358, U = 0, V = 0, P = 1, γ = 1.67), Helium.

In the computation, the nondimensional cell size used is ∆x = ∆y = 0.25.
In order to identify weak flow features which are often lost within contour plots, we present a number

of Schlieren images. These pictures depict the magnitude of the gradient of the density field,

|∆ρ| =
√

(
∂ρ

∂x
)
2

+ (
∂ρ

∂y
)
2

,(3.1)

and hence they may be viewed as idealized images; the darker the image the larger the gradient. The
density derivatives are computed using straightforward central-differencing. The following nonlinear shading
function, φ is used to accentuate weak flow features [22],

φ = exp(−k
|∆ρ|

|∆ρ|max
),(3.2)

where k is a constant which takes the value 10 for Helium and 60 for air. For R22 simulation in the next
test case, we use 1 for heavy fluid and 80 for air.

Fig.(4.2) shows snapshots of Schlieren-type images at nondimensional time t=0.0 and t=125.0. Before
the shock hits the bubble, wiggles usually appear around the bubble because the numerical scheme cannot
precisely keep the sharp material interface. The wiggles spread in all directions. When they reach the
solid wall, they bounce back. But all these noise have a very small magnitude. After the shock hits
the bubble, the original shock wave separates into a reflected and a transmitted shock waves. A complex
pattern of discontinuities has formed around the top and bottom of the bubble. Since Helium has a lower
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density in comparison with air, any small perturbation at the material interface can easily be amplified to
form the instability. This instability at the material interface is closely related to the Richtmyer-Meshkov
instability. In comparison with the result in [8], the current scheme could capture the unstable interface
structure automatically. The result here is basically consistent with both the experiment and that from the
mesh-refinement study [22]. It is an interesting problem to further study shock-bubble interaction case, and
understand the dynamics of any special numerical treatment on the interface stability. In our calculations,
we do not specifically pick up the location of interfaces.

CASE(2) A Ms=1.22 shock wave hits a R22 cylindrical bubble

With the same scheme, we investigate the interaction of a Ms = 1.22 planar shock wave, moving in the
air, with a cylindrical bubble of R22. The main difference between this case and the previous one is that the
density of the bubble here is much larger than the density of air. The initial data is as follow

W = (ρ = 1, U = 0, V = 0, P = 1, γ = 1.4), pre-shock air

W = (ρ = 1.3764, U = −0.394, V = 0, P = 1.5698, γ = 1.4), post-shock air

W = (ρ = 3.1538, U = 0, V = 0, P = 1, γ = 1.249), R22.

In the numerical experiment we use ∆x = ∆y = 0.25. Fig.(4.3) shows two snapshots of Schlieren-type images
at nondimensional time t=0.0 and t=150.0. Due to the higher density in the bubble region, different from
Case (1) the material interface in this case is basically stable. This observation is also consistent with the
theoretical understanding and physical experiment.

3.2. Reactive Flow Calculations. The study of detonation wave has been undertaken theoretically
and computationally for over a century. The successful theory of Zel’dovich, von Neumann, and Doering has
come to be a standard model. The ZND solution for the reacting compressing Euler equations is described in
[10], which consists of a non-reactive shook followed by a reaction zone; both the shock and the reaction zone
travel at a constant speed D. Given γ and heat release Q0, there is a minimum shock speed, the so-called
Chapman-Jougnet value DCJ , above which the ZND solution can be constructed.

The parameter which relates to the shock speed D of a given detonation wave to the CJ velocity DCJ

is the overdrive factor f, which is defined as

f ≡
(

D

DCJ

)2

.(3.3)

The value of f determines the stability of the detonative front.

In the following test cases, we only consider the reactive flow with two species, i.e. the reactant and
the product. The reactant is converted to the product by a one-step irreversible reactive rule governed by
Arrhenius kinetics. The factor K(T ), which depends on the temperature, is given by

K(T ) = K0T
αe−E+/T ,

where K0 is a positive constant. In the current paper, we assume that α = 0 and the gas constant R is
normalized to unity. Therefore, the above temperature T is determined by T = P/ρ.

One important parameter in the numerical calculation of ZND solution is the half-reaction length L1/2,
which is defined as the distance for half-completion of the reactant starting from the shock front. Usually
the reaction prefactor K0 is selected such that the half-reaction length is unity. From the Arrhenius formula,
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the half reaction length is defined as

L1/2 =
∫ 1/2

1

D − U

K0Zexp(−E+

T )
dZ,(3.4)

where D is the speed of the shock, U is the post-shock flow speed.

In the output of numerical results, the mass fraction Z is defined as

Z =
ρ1

ρ1 + ρ2
.

Case(1): 1-D stable ZND detonation: γ = 1.2, Q0 = 50, E+ = 50.0, f = 1.8

This test case is from [2]. The pre-shock state is normalized to P0 = ρ0 = 1 and velocity U0 = V0 = 0,
the post-shock can be obtained using Chapman-Joguet condition. The prefactor K0 is chosen to be K0 =
145.68913 so that the length of the half-reaction zone L1/2 is unit. This case corresponds to the stable ZND
profile. The results with 10, 20 and 40 points/L1/2 are shown in Fig.(4.4) and (4.5).

Case(2): 1-D unstable detonation: γ = 1.2, Q0 = 50, E+ = 50, f = 1.6

In order to get a high quality simulation result for the unstable overdriven detonation, a high resolution
solution is usually required to resolve the instability. At the same time, the correct capturing of oscillatory
period requires a large computational domain. As pointed out in [13], for a particular computation, one can
be tempted to keep only a few points behind of the shock, with the reasoning that the information behind
the shock either never catches up with, or does not affect the shock during the computation. However, if
too small a computational domain behind the shock is specified, the points at the edge of and outside of
the computational domain cease to be updated after some time, leading to a corruption of the data in that
region. The U + c waves emanating from inappropriate boundary condition eventually catch up with the
shock itself, thus erroneously alternate the shock properties. The analysis in [13] shows that if one expects
the numerical results at time t to be correct, the computational domain L and t must satisfy the following
inequality

t <
L

U + c−D
+

L

D
,(3.5)

where U is the speed of the post-shock flow, and c is the sound speed. For the current test, L should satisfy

L ≥ 1.88t.

This classical unstable detonation wave was first used by Fickett and Wood [11]. An important physical
quality for unstable detonation is the pressure history at the precursor shock in the oscillatory ZND wave
as a function of time. For a stable ZND wave, this shock pressure history should exhibit small fluctuations
about the known precursor shock value and decay as time evolves. In the case of unstable detonations, the
shock front pressure history makes larger excursions from the ZND value. For the case with γ = 1.2, q0 = 50,
E+ = 50, and overdrive f = 1.6, according to Erpenbeck [7] this ZND profile is a regular periodic pulsating
detonation with maximum shock pressure per period given by 101.1± 0.2 while the unperturbed ZND shock
pressure is 67.3.

In the current study, the density and pressure are normalized to unit after shock. According to Q0 =
50, γ = 1.2, the CJ speed becomes DCJ = 6.80947, and the prefactor is chosen to be K0 = 230.75 so as to get
unit half-reaction length. The post-shock state can be determined by Chapman-Jouguet condition with the
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Table 3.1

Maxima and minima pressure vs. time for f=1.6 case and 80/L1/2.

Time Maxima Time Minimum

7.3513 114.1553 11.8038 60.1576

15.9353 85.0627 18.9221 56.7383

23.3201 98.1318 26.3057 56.7478

30.7833 98.3344 33.6993 56.8976

38.1373 97.8645 41.1103 56.7854

45.6102 98.0387 48.6158 56.5972

53.1075 98.8378 56.0587 56.8738

60.5059 98.1242 63.4607 56.9737

67.9318 97.3600 70.8918 56.6064

75.4233 98.6184 78.3885 56.6841

82.8773 98.7023 85.8014 57.0227

90.2201 97.3901 93.2212 56.7298

97.6928 98.2211

given shock speed. Due to the “start-up” numerical incompatibility, there is a large initial shock pressure
up to 114 at time t equal to 8, see Fig(4.6). After t > 15, the motion of the shock front becomes periodic.

In this test, we observe that at least 20 points/L1/2 is needed for getting a correct unstable ZND solution.
In Fig.(4.6) and (4.7) we show the numerical results with 20 points/L1/2 and 40 points/L1/2 respectively.
At the same time, the result with 80 points/L1/2 is given as a reference. In Table(3.1), the data of local
maximum and minimum pressure as a function of time are listed.

Case(3) Weak shock wave hitting the reactant
In order to validate the multicomponent BGK scheme, we design the following 1D case to simulate the

chemical reaction in which the reactant and product have different γ. The initial condition is given below,

WL = (ρL, UL, PL, γL) = (2.667, 1.479, 4.500, 1.4) post-shock air

WM = (ρM , UM , PM , γM ) = (1.0, 0.0, 1.0, 1.4) pre-shock air

WR = (ρR, UR, PR, γR) = (0.287, 0.0, 1.0, 1.2) (Reactant).

This case is about a weak shock wave with M = 2.0 hitting the reactant. We use the Arrhenius form for the
reaction rate with E+ = Q0 = 50, and K0 = 600.0. The numerical cell size is ∆x = 1/2000. In Fig.(4.8) we
show the numerical results at time t = 0.20. Since the shock is too weak to construct a ZND solution, the flow
motion looks only like a two-component nonreactive gases. From Fig.(4.8), we can see the ordinary incident
shock moves faster than that of the transmitted shock, and the weak reflection wave moves backward.

Case(4) Strong shock wave hitting the reactant
We increase the strength of the shock in Case(3) up to M = 8.0. The initial condition is given below,

WL = (ρL, UL, PL, γL) = (5.565, 7.765, 74.50, 1.4) post-shock air

WM = (ρM , UM , PM , γM ) = (1.0, 0.0, 1.0, 1.4) pre-shock air

WR = (ρR, UR, PR, γR) = (0.287, 0.0, 1.0, 1.2) (Reactant).
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In Fig.(4.9) we show the numerical results at time t = 0.05. From the figure, we observe that after the shock
hits the reactant, a ZND solution is obtained.

Case(5) Viscous Reactive Flow
This case is from [18]. The initial data is a one-dimensional ZND profile in the x-direction. The ZND

wave connects the left state ρl = 1.731379, Ul = 3.015113 Vl = 0, ρlEl = 130.4736 by a Chapman-Jouget
detonation with the right state ρr = 1, Ur = 0, VR = 0, ρrEr = 15. If no transverse gradient is present
in the initial data, the numerical scheme will preserve the one-dimensional ZND profile. So, a periodic
perturbation is imposed in the y-direction of the initial ZND profile, where the initial data W (x, y, 0) is set
to WZND(x + ∆xNINT(0.05

∆x cos(4πy))), where NINT(z) is the nearest integer to z.
The current test has Q0 = E+ = 50, γ = 1.2. The reaction rate K0 is set to be 104. The coefficient of

dynamical viscosity µ is set to 1.0e-4. With the above choice of parameters, the half reaction length L1/2

of the inviscid one-dimensional Chapman-Jouget detonation wave is equal to 0.0285. In our computation,
∆x = ∆y = 1

800 is used. Therefore, there are about 23 points/L1/2.
Based on the analysis in [13], in order to get an accurate solution it is sufficient to use a computational

domain x ∈ [0, 1.2]. At the left and the right boundary, we impose the left and right states of the initial
traveling wave solution. At the lower and upper boundaries, periodic boundary conditions are used.

Fig.(4.10) shows a sequence of snapshots of the density distributions starting from the time t = 0.0.
Fig.(4.11) is the snapshot of pressure at later times when the ZND front has a regular periodic oscillating
profile. The first picture is taken at t = 13

80 , which is just after the collision of two triple points. This figure
clearly shows the formation of a Mach stem. In the next few snapshots, the movement of triple points along
the transverse shock front are clearly captured. A high pressure spot develops at the location of triple-point
intersection. Fig.(4.12) shows the snapshots of the temperature variations. More figures, such as the mass
fraction and vorticity, are presented in [16].

This test case corresponds to the cellular regime [2]. The hot spots in the shock front should display a
regular diamond propagating pattern, such as observed in physical experiments. In Fig.(4.13), we plot the
numerical soot track of the location of shock front, which is the successive geometric representation of the
ZND front profile. Since only the position of the shock front is recorded, one dimensional data is required
at each output time. From the numerical soot track display, we can easily observe the formation of cellular
pattern.

4. Conclusion. In this paper, we have successfully extended the BGK-type gas-kinetic scheme to
multidimensional reactive flows. Since each component of the flow is captured individually, mass conservation
is precisely preserved for each component in nonreactive multimaterial flow calculations. For the reactive
flow calculations, the mass exchange between different components has been implemented in the current
kinetic method, as well as the energy release in the reaction process. Many numerical test cases validate
the current approach and show the advantages of the kinetic scheme in the description of multicomponent
flow calculations. For example, the unstable and stable material interfaces are captured automatically in the
shock-bubble interaction cases.
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Fig. 4.1. Physical domain for shock-bubble interaction

Fig. 4.2. Numerical Schlieren images of the interaction of an Ms=1.22 shock wave in the air moving from right to left

over an Helium cylindrical bubble. The second image is the density distribution at time t = 125.0. The third one is the density

profile along the centerline of the second figure.
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Fig. 4.3. Numerical Schlieren images of the interaction of an Ms=1.22 shock wave moving from right to left over an R22

cylindrical bubble. The second image is the density distribution at time t = 150.0. The thrid one shows the density profile

along the centerline of the second figure.
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Fig. 4.4. Mesh refinement study of the pressure history at the shock front for the stable detonation wave, where f=1.8,

γ = 1.2, Q0 = E+ = 50, and L1/2 = 1.0 (CFL=0.5).
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Fig. 4.5. Numerical solutions (solid line) of density ρ, velocity U, pressure P and mass fraction Z, where f=1.8, γ = 1.2,

Q0 = E+ = 50, L1/2 = 1.0, and 10 points/L1/2 (CFL=0.5). The dash line is the exact solution.
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Fig. 4.6. Local maximum pressure variation as a function of time for the overdriven detonation, where f=1.6, γ = 1.2,

Q0 = E+ = 50, and L1/2 = 1.0. Solid line: 80 points/L1/2, and dash-dot line: 20 points/L1/2 (CFL=0.5) .
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Fig. 4.7. Local maximum pressure variation as a function of time for the overdriven detonation, where f=1.6, γ = 1.2,

Q0 = E+ = 50, and L1/2 = 1.0. Solid line: 80 points/L1/2, dash-dot line: 40 points/L1/2 (CFL=0.5).

23



0 0.2 0.4 0.6 0.8 1
0

1

2

3

D
en

si
ty

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

P
re

ss
ur

e

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

V
el

oc
ity

0 0.2 0.4 0.6 0.8 1
0

0.5

1
M

as
s 

F
ra

ct
io

n

0 0.2 0.4 0.6 0.8 1
0

1

2

3

D
en

si
ty

 1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

D
en

si
ty

 2

Fig. 4.8. Weak shock wave (M = 2.0) in the air (γ = 1.4) hits the reactant gas (γ = 1.2). ∆x = 1/2000. The reaction

has E+ = Q0 = 50, and K0 = 600.0 (CFL=0.5).
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Fig. 4.9. Strong shock wave (M = 8.00) in the air (γ = 1.4) hits the reactant gas (γ = 1.2). ∆x = 1/2000. The reaction

has E+ = Q0 = 50.0, and K0 = 600.0 (CFL=0.5).
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Fig. 4.10. Sequence of eight snapshots of density starting from time t = 0 with the time increment of 1
16

, where Q0 =

E+ = 50, γ = 1.2, ∆x = ∆y = 1
800

, 23 points/L1/2. Shock moves from left to right.
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Fig. 4.11. Sequence of ten snapshots of pressure starting from time t = 35
96

with each time increment of 1
96

, where

Q0 = E+ = 50, γ = 1.2, ∆x = ∆y = 1
800

, 23 points/L1/2. Shock moves from left to right.
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Fig. 4.12. Sequence of ten snapshots of temperature start from time t = 35
96

with time increment of 1
96

, where Q0 = E+ =

50, γ = 1.2, ∆x = ∆y = 1
800

, 23 points/L1/2. Shock moves from left to right.
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Fig. 4.13. Numerical soot track: successive geometric representation of the ZND shock front. Each line represents the

location of shock front. The vertical axis corresponding to the time.
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